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This paper deals with the transmission of a soliton in a random medium
described by a randomly perturbed Korteweg–de Vries equation. Different
kinds of perturbations are addressed, depending on their specific time or posi-
tion dependences, with or without damping. We derive effective evolution
equations for the soliton parameter by applying a perturbation theory of the
inverse scattering transform and limit theorems of stochastic calculus. Original
results are derived that are very different compared to a randomly perturbed
Nonlinear Schrödinger equation. First the emission of a soliton gas is proved to
be a very general feature. Second some perturbations are shown to involve a
speeding-up of the soliton, instead of the decay that is usually observed in
random media.
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1. INTRODUCTION

The stability properties of the solitons were discovered by Zabusky and
Kruskal in their well-known numerical study, (1) and were confirmed by the
theory developed in the work by Gardner et al. (2) They show that the
Korteweg–de Vries (KdV) solitons preserve their identities during soliton–
soliton interactions. Lax considerably generalized these ideas, (3) and
Zakharov and Shabat showed that the method worked for the nonlinear
Schrödinger (NLS) equation. (4) Following this pioneer work solitons driven
by various types of perturbations were studied. A lot of work has been



devoted to the transmission of a soliton through a slab of nonlinear and
random medium, especially in the case of the KdV equation and of the
NLS equation. (5–7) The main results have been obtained for the randomly
perturbed NLS equation. Kivshar et al. (8) obtained results in the case of a
random medium consisting of pure point impurities with very low density
which affect only the potential. In such conditions it is shown that there is
a threshold below which the pulses decay quickly. This analysis was later
extended by Bronski (9) and by the author. (10) Numerical modeling of the
NLS equation with random linear potential confirms this theory. (11, 12) In
ref. 10 we consider the NLS equation and we assume that inhomogeneities
affect the potential and the nonlinear coefficient. Using the inverse scatter-
ing transform, we exhibit several typical behaviors. The mass of the
transmitted soliton may tend to zero exponentially (as a function of the size
of the slab) or following an algebraic decay; or else the soliton may keep its
mass, while its velocity decreases at a very slow rate.

There exist also experimental investigations of the propagation of
nonlinear waves in random media, (13) describing the KdV type wave prop-
agation. Indeed for both historical, physical, and theoretical reasons the
KdV equation is a paradigm for the study of nonlinear wave propagation.
As a consequence there can be found in the literature a lot of papers
devoted to the study of the influence of various types of random perturba-
tions on the KdV soliton propagation. In ref. 14 the evolution of randomly
modulated initial solitons in the non-random KdV equation is investigated.
Other authors have examined the propagation of an initially deterministic
wave controlled by a randomly perturbed KdV equation. In some very
special configurations the solution of the randomly perturbed KdV equa-
tion can be computed explicitly. By applying the exact inverse scattering
transform in a suitably moving reference frame, Wadati obtained the exact
solution in case of an additive time-dependent noise. This solution is a
single-soliton whose position is shifted by a random process. He was then
able to study the average of this solution in case of a white noise, (15) even
by taking into account some dissipation; (16) finally this work was general-
ized by Iizuka to the case of a noise with long-range correlation, (17) and
confirmed by extensive numerical simulations. (18) Other authors have
applied the collective variable approximation or the averaged Lagrangian
approach, where the solution is sought in a soliton-like form with time-
dependent parameters. (19, 5) This ansatz is substituted into the Lagrangian of
the system, so that a finite-dimensional system of ordinary differential
equations is obtained for the set of soliton parameters. The collective vari-
able approach is efficient when dealing with a slowly varying perturbation
in the sense that it is almost constant at the scale of the soliton width. The
most significant drawback of this method is that it neglects radiation
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effects. The generation of radiation by a soliton during its motion in a
randomly inhomogeneous medium is studied in ref. 5, but the analysis does
not take into account the interplay between the generated radiation and the
soliton parameter, and do not consider the generation of new solitons
during the motion, although the production of a secondary soliton when
the KdV equation undergoes a small perturbation that satisfies an appro-
priate sign condition has been predicted. (20) We shall consider more general
types of perturbations and proceed under a different asymptotic frame-
work. Our main contribution is that we use the Inverse Scattering Trans-
form so as to take into account both the variations of the soliton part and
the radiative part of the wave. Both effects and their interplay are impor-
tant, especially when the correlation length of the perturbation is of the
same order as the soliton width. The interaction of different length scales
are an important issue in localization theory for wave propagation in linear
media (21, 22) so the relationship of the width of the soliton and the correla-
tion length of the perturbation will clearly have a fundamental effect on the
questions we are trying to answer. We shall consider the influence of small
random perturbations and aim at reporting the possible asymptotic behav-
iors when the amplitudes of the random fluctuations go to zero and the size
of the system goes to infinity. We shall put into evidence several novel and
interesting features concerning the dynamics of the input soliton, the emis-
sion of radiation, and the generation of a soliton gas.

The paper is organized as follows. Section 2 is devoted to a short
review of the Korteweg–de Vries equation and the inverse scattering. We
introduce exact traveling solutions (soliton solutions) of the integrable
system, and we also present basic results that are required for our study. In
the following sections we address different random problems: perturbations
with time-dependent coefficients, perturbations with position-dependent
coefficients that preserve different integrals of motion. By applying a
modified version of the inverse scattering transform we study the interac-
tion of the main soliton, the radiation, and the soliton gas, and we derive
an effective system that governs the evolution of the soliton parameter. We
also compare the theoretical results with full numerical simulations of the
KdV equation.

2. HOMOGENEOUS KORTEWEG–DE VRIES EQUATION

The equation we consider in this paper is the Korteweg–de Vries
equation:

ut+uxxx −6uux=0, (1)
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that governs the evolution of a real field u. The subscripts x and t stand for
partial derivatives with respect to position and time, respectively. This
integrable equation supports moving nonlinear localized excitations in the
form of solitons, so we can study the effects of various perturbations with
the known analytic behavior of the unperturbed dynamics. We shall begin
by a short review of the Inverse Scattering Transform applied to the KdV
equation which was originally introduced by Gardner et al. (2) Details of the
rigorous theory can be found in ref. 23.

2.1. Direct Transform: The Scattering Problem

The scattering problem associated with the KdV equation is the
Schrödinger spectral problem:

kxx+(k2−u(x)) k=0, (2)

where k ¥ R is the spectral parameter. Let us first assume that u — 0. In
such conditions, there exists no solution in L2(R) of (2) whatever k, which
means that the discrete spectrum is empty. The continuous spectrum con-
sists of the real axis; the associated eigenspace is of dimension 2, and the
pair of functions (e−ikx, e ikx) is a basis of the eigenspace associated with the
parameter k (eigenvalue k2 of Eq. (2)). From now on we assume u – 0.

Continuous Spectrum. The so-called Jost functions f and g are
the eigenfunctions which are associated with the spectral parameter k
(eigenvalue k2) and which satisfy the following boundary conditions:

f(x, k) 4 e ikx, xQ., (3)

g(x, k) 4 e−ikx, xQ −.. (4)

If u decays sufficiently rapidly as |x|Q. (more exactly for u ¥ L1),
then f(x) e−ikx and g(x) e ikx are well-defined for any k ¥ R and can be ana-
lytically continued for Im(k) > 0. The function fg(x, k)=f(x, −k) (resp.
gg(x, k)=g(x, −k)) associated with the function f (resp. g) solution of (2)
is also a solution of (2) for the same parameter k ¥ R. We thus consider
also the eigenfunctions fg and gg which can be defined either as the
complex conjugates of f and g respectively, or as the eigenfunctions which
are associated with the spectral parameter k and which satisfy the following
boundary conditions:

fg(x, k) 4 e−ikx, xQ., (5)

gg(x, k) 4 e ikx, xQ −.. (6)
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Furthermore the Jost functions f(x, k) and fg(x, k) are linearly indepen-
dent because their Wronskian

W(f, fg) :=ffg
x −fxfg=−2ik (7)

is nonzero as soon as k ] 0 (compute the Wronskian at xQ.). They form
a base of the space of the solutions of (2), so that we have the decomposition:

g(x, k)=a(k) fg(x, k)+b(k) f(x, k). (8)

where a and b are the so-called Jost coefficients. Similarly, W(g, gg)=2ik
(compute the Wronskian at xQ −.). Equation (8) gives another form for
this Wronskian:W(g, gg)=2ik(|a|2−|b|2). This implies that:

|a(k)|2−|b(k)|2=1. (9)

Multiplying (8) by −bg, and summing with (8) complex-conjugated and
multiplied by a we get that:

f(x, k)=a(k) gg(x, k)−bg(k) g(x, k). (10)

If follows from (8)–(10) in particular that:

a(k)=
i
2k

W(f, g). (11)

From this definition we can see that a is well-defined over the real axis and
can be analytically continued in the upper complex half-plane Im(k) > 0.
b is well-defined over R, but there is no reason to believe that it could
be continued out of the real axis, except if u is exponentially decaying.
Furthermore it can be shown by symmetry arguments that a(−k)=ag(k)
and b(−k)=bg(k). From (2) and (11) it follows also that:

a(k)Q 1 as |k|Q., Im(k) \ 0. (12)

Discrete Spectrum. On the one hand we can see from (12) that a
can only have a finite number of zeros in the upper complex half plane. On
the other hand Eq. (9) shows that a cannot have any zero on the real axis
(except maybe in x=0). Let us denote by kj, j=1,..., J the zeros of a in
the upper complex half plane. For any j, the functions f(., kj) and g(. , kj)
are linearly dependent, i.e., there exists rj such that g(. , kj)=rjf(., kj).
Accordingly f and g are exponentially decaying as |x|Q. which implies
that they are eigenfunctions of the discrete spectrum. Thus k2

j ¥ R−, or else
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kj=ioj, oj > 0, f(., kj) is real-valued and the discrete spectrum of Eq. (2)
is l=−o2

j . Finally note that we can deduce from (2) and (11) that:

da
dk
:
k=kj

=−irj F f2(x, kj) dx

This relation shows that aŒ(kj) ] 0, that is to say the zeros of a are simple.
In summary the set of quantities {a(k), b(k), k ¥ R; kj, rj, aŒ(kj),

j=1,..., J} is the scattering data for the spectral problem (2). The interpre-
tation of these data is well-known and gives the name of the method. The
Jost function f describes a wave incident from the left and scattered by the
potential u. According to Eqs. (8), (10), (3), and (4) the reflection and
transmission coefficients are bg/a(k) and 1/a(k), respectively, and the
conservation of the flux gives: |bg/a(k)|2+|1/a(k)|2=1 which also reads
as (9).

2.2. Time Evolutions of the Scattering Data

The time equations for the scattering data are:

a(t, k)=a(t0, k), k ¥ R, (13)

b(t, k)=b(t0, k) exp(iw(k)(t− t0)), k ¥ R, (14)

rj(t)=rj(t0) exp(iw(kj)(t− t0)), j=1,..., J, (15)

where w(k)=8k3. Note that w(k) is the dispersion relation of the linear-
ized KdV equation . Indeed the linear form of Eq. (1) is ut+uxxx=0, whose
dispersion relation is obtained by letting u(t, x)=exp(2ikx+iwt).

2.3. Inverse Transform

Given the set of scattering data, we define:

F(x)=
1
2p

F
R

b
a
(k) e ikx dk−i C

J

j=1

rj

a −j
e−oj x, (16)

Then we compute the kernel K as the solution of the Gel’fand–Levitan–
Marchenko equation:

K(x, y)+F(x+y)+F
.

x
K(x, z) F(z+y) dz=0. (17)
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In such conditions, it can be proved (2) that:

u(x)=−2
dK(x, x)

dx
. (18)

2.4. Conserved Quantities

Conserved quantities can be worked out as in any integrable system. (24)

The mass N, the energy E, and the HamiltonianH:

N :=F
R
u dx, E :=F

R
u2 dx, H :=F

R
2u3+u2

x dx (19)

are three of the infinite number of conserved quantities for the KdV equa-
tion. It will be necessary below to express the mass and energy in terms of
scattering data. Let us define

n(k) :=
1
p
log(|a|2 (k))

for k ¥ R. The mass, energy, and Hamiltonian can be decomposed into the
sums of continuous parts and discrete parts: (25)

N=F
R
n(k) dk−2 C

J

j=1
(2oj), (20)

E=F
R
(2k)2 n(k) dk+

2
3

C
J

j=1
(2oj)3, (21)

H=F
R
(2k)4 n(k) dk−

2
5

C
J

j=1
(2oj)5. (22)

2.5. Soliton

Equation (1) possesses soliton solutions, that is to say waves that
propagate at constant velocities with constant envelopes. These solutions
are of the form:

us(t, x)=−2o2 sech2(o(x−xs(t))), (23)

where

xs(t)=x0+4o2t (24)
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is the center of the soliton. The mass, the velocity, the energy, and the
Hamiltonian of the soliton are respectively:

Ns=−4o, Us=4o2, Es=
16
3 o

3, Hs=−64
5 o

5. (25)

The width of the envelope of the soliton is inversely proportional to its
mass. Note also that the bandwidth of the time spectrum of the soliton
(i.e., the Fourier transform of us with respect to t) is of the order of 8o3. In
the following we shall refer to 8o3 as the typical frequency of the soliton. In
the spatial domain, the bandwidth of the spatial spectrum of the soliton
(i.e., the Fourier transform of us with respect to x) is of the order of 2o. In
the following we shall refer to 2o as the typical wavenumber of the soliton.
The soliton solution (23) is associated with the following scattering data:

as(k)=
k−io
k+io

, bs(k)=0. (26)

as admits a unique zero in the upper complex half plane which is io. The
corresponding Jost functions are:

fs(x, k)=e ikx k+io tanh(o(x−xs))
k+io

, (27)

gs(x, k)=e−ikx k−io tanh(o(x−xs))
k+io

. (28)

3. TIME PERTURBATIONS OF THE KDV EQUATION

3.1. The Perturbed Model

We consider a perturbed Korteweg–de Vries equation with a non-zero
right-hand side:

ut+uxxx −6uux=eR(u)(t, x). (29)

The small parameter e ¥ (0, 1) characterizes the amplitude of the perturbation,
and R may be a combination of the following three terms:

R1(u)=V1(t) ux, (30)

R2(u)=6V2(t) uux, (31)

R3(u)=V3(t) uxxx, (32)
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where V1 represents a time-dependent perturbation of the velocity, V2 a time-
dependent perturbation of the nonlinear coefficient, and V3 a time-depen-
dent perturbation of the dispersion. Such a random KdV equation may be
derived for instance from the plasma fluid equations that describe the
propagation of an ion-acoustic soliton in the presence of noise. (26) We shall
refer to ref. 5 and references therein for further physical motivations. Note
that we could consider other kinds of perturbations, as long as they satisfy
the condition:

F uR(u) dx=0

which implies that the energy of the solution is preserved:

F u2(t, x) dx=F u2(t=0, x) dx

Note also that the perturbations Rj also preserve the total mass of the
system since > Rj(u) dx=0. The mass conservation is not necessary for the
derivations of the results contained in the forthcoming Proposition 3.1,
while the energy conservation is essential. However the mass conservation
will allow us to establish a complementary result about the mass of the
generated soliton gas. The perturbations Vj are assumed to be zero-mean,
stationary and ergodic processes. The exact technical condition is that
the Vj should be ‘‘f-mixing’’ (in the sense of ref. 27, Section 4-6-2) with
f ¥ L1/2. For the sake of simplicity we also assume that they are indepen-
dent processes, but this hypothesis could be removed at the expense of
computing crossed terms that do not affect qualitatively the forthcoming
statements. The autocorrelation function of Vj is denoted by:

cj(t) :=E[Vj(0) V(t)]=E[Vj(tŒ) Vj(tŒ+t)], (33)

where E stands for the statistical average with respect to the stationary dis-
tribution of Vj. The f-mixing condition with f ¥ L1/2 means in particular
that the perturbation has enough decorrelation properties so that the
integral > |cj(t)|1/2 dt is finite. We can then introduce the Fourier transform
of the autocorrelation function of the perturbation Vj:

ĉj(w) :=F
.

−.
cj(t) cos(wt) dt, (34)

which is nonnegative real-valued since it is proportional to the power
spectral density by the Wiener–Khintchine theorem. (28) For instance, if the
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perturbation Vj is a white noise cj(t)=s
2
j d(t), then the spectrum of the

perturbation is flat and given by ĉj(w)=s2
j for any w.

Our method is based on the Inverse Scattering Transform. The
random perturbation induces variations of the spectral data. Calculating
these changes we are able to find the effective evolution of the field and
calculate the characteristic parameters of the wave. We shall be interested
in the effective dynamics of the soliton propagating over long times T/e2.
The total energy is conserved but the discrete and continuous components
evolve during the propagation. The evolution of the continuous component
corresponding to radiation will be found from the evolution equations of
the Jost coefficients. The evolutions of the soliton parameter will then be
derived from the conservation of the total energy. However we shall see
that this approach turns out to be a little more tricky than expected
because of the generation of new solitons.

We now describe the evolutions of the Jost coefficients a and b during
the propagation. They satisfy the following exact equations: (19)

“a
“t
=

ie
2k

(aa+bb), (35)

“b
“t
=8ik3b−

ie
2k

(abg+ba), (36)

where

a(k, t)=F |f|2 (x, k, t) R(u)(x, t) dx,

b(k, t)=F f2(x, k, t) R(u)(x, t) dx.

These equations will be needed below when calculating the radiative mass
and energy generated by the moving soliton. They express the fact that the
evolutions of the scattering data are coupled due to the perturbation R
through the coefficients a and b. We would like to point out a remarkable
feature of Eqs. (35)–(36). The coupling coefficients a and b are typically of
order 1 uniformly with respect to k and e, but the actual coupling terms in
the right-hand sides of Eqs. (35)–(36) are not of order e uniformly with
respect to k because of the factor ie/(2k). If |k| is of order e, then the per-
turbed term could be of order 1. Consider for a while the early steps of the
propagation, and assume that the wave is still very close to the original
soliton us. If k=iekŒ, then Eq. (35) can be approximated by at=as/(2kŒ)
where as=> R(us) dx. Two different behaviors are possible that depend
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whether the total mass is preserved. If the total mass is not preserved, then
as ] 0 in general so that a new soliton with parameter of order e is gener-
ated if as > 0. If the total mass is preserved, then as=0 and at ’ e

2/k so
that a new soliton with parameter of order e2 may be generated.

3.2. Effective Regime

We can now state the main result of this section. For this we need to
define the concept of soliton gas in our framework. A soliton gas is a
collection of solitons whose total energy goes to zero as eQ 0 while the
sum of their masses is non-zero.

Proposition 3.1. The following event has a probability which tends
to 1 as eQ 0: the scattered wave at time t/e2 consists of one main soliton
with parameter o e(t), a soliton gas, and radiation. The process (o e(t))t ¥ [0, T]

converges in probability to the deterministic function (ol(t))t ¥ [0, T] which
satisfies the ordinary differential equation:

dol
dt

=F(ol), ol(0)=o0, (37)

The function F is equal to:

F(o)=−
1

16o2 C
3

j=1
F
R
(2k)2 Cj(o, k) dk, (38)

where the functions Cj are the mass density scattered by the soliton with
parameter o per unit time due to the perturbation Rj. The exact expressions
of the Cj’s are the following:

C1(o, k)=0, (39)

C2(o, k)=C(o, k) ĉ2(W(o, k)), (40)

C3(o, k)=C(o, k) ĉ3(W(o, k)), (41)

where the functions C and W are defined by:

C(o, k)=
256pk2o4 11+k2

o2
22

9 sinh2 1p k
o
2

, W(o, k)=8k(k2+o2). (42)
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The first assertion of the proposition means that the event ‘‘the
transmitted wave consists of one soliton plus some other small amplitude
wave’’ occurs with very high probability for small e, while the second
assertion gives the effective evolution equation of the parameter of the
transmitted soliton in the asymptotic framework eQ 0. C(o, k) is actually
the spectral mass density scattered by the soliton with parameter o per unit
time due to a perturbation R=6V(t) uux or R=V(t) uxxx with a random
process V(t) which is white-noise distributed with autocorrelation function
E[V(tŒ) V(t+tŒ)]=d(t). Note that the function C satisfies the scaling rela-
tionship C(o, k)=o6C(1, k/o). In case of a colored noise the power
spectral density of this noise should be taken into account according to
Eqs. (40)–(41). Since the function kW k2C(o, k) is maximal around ±o
(see Fig. 1b), the spectral band of the power spectral density of V that
imposes the value of the function F lies around W(o, o)=16o3 which is
twice the typical frequency of the soliton.

The scattered wave consists of one main soliton (with parameter ol of
order 1), a soliton gas (with zero energy but non-zero mass), and radiation
(associated with the continuous spectrum). The mass and energy of the
radiation are:

Nr=C
3

j=1
F

t

0
F
R
Cj(ol(s), k) dk ds, (43)

Er=C
3

j=1
F

t

0
F
R
4k2Cj(ol(s), k) dk ds, (44)

respectively. We can compute also the mass Ng of the soliton gas since the
total mass is preserved by the perturbation R, so:

Ng=4(ol(t)−o0)−Nr.

The soliton gas actually consists of about e−2 solitons with parameters of
order o ej ’ e

2. That is why the mass (equal to −4 ;j o
e
j) is of order 1, while

the energy (equal to (16/3);j o
e
j
3) is of order e4 and hence asymptotically

zero.
Before giving the proof of Proposition 3.1, we would like to give a

short comment on the result concerning the perturbation V1 of the velocity.
Proposition 3.1 claims that a time-perturbation V1 of the velocity does
not induce any modification of the dynamics of the soliton parameter
with respect to the homogeneous configuration. This was expected, since
Eq. (29) with R(u)=V1(t) ux also reads: (16)

uT+uXXX −6uuX=0
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Fig. 1. (a) Spectral mass density C(o, k) scattered by the soliton with parameter o per unit
time due to a perturbation R=6V(t) uux or R=V(t) uxxx with a random white-distributed
process V(t). Here we take o=1. (b) Spectral energy density k2C(o, k)/4 in the same config-
uration. The spectral energy density is maximal at k=±0.9244o.
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with the change of variables X=x+e > t
0 V1(s) ds and T=t. Starting from a

pure incoming soliton, the scattered wave can be computed explicitly. It is
still a soliton, which the same mass as the incoming soliton, with a random
shift of the center:

u(t, x)=−2o2 sech2 5o 1x+e F t

0
V1(s) ds−4o2t26 .

Finally, note that a perturbation V2 of the nonlinear coefficient or a per-
turbation V3 of the dispersion gives rise to the very same effective regime.
This is in some sense expected, since a soliton is a special solution of the
KdV equation for which the nonlinear effects exactly counterbalance
dispersion.

3.3. Sketch of Proof

In this section we outline the main steps of the proof of Proposition 3.1
which follows closely the strategy developed in ref. 10 in the NLS frame-
work and we shall underline the key-points.

In a first time we carry out the analysis under the so-called adiabatic
hypothesis. The adiabatic approximation consists in assuming a priori that,
while the soliton exists, its evolution and the other components of the wave
do not interact. More precisely, we assume that the time evolutions of the
Jost coefficients a and b given by Eqs. (35)–(36) depend only on the com-
ponents of the functions a and b which are associated with the soliton. We
then carry out calculations under this approximation. It reduces the analysis
to a infinite-dimensional set of ordinary differential equations with random
coefficients, and eventually it provides an expression of the solution u.
A posteriori we check for consistency that this approximation is actually
justified in the asymptotic framework eQ 0. More exactly we show that the
components of the functions a and b which correspond to the interplay
between the computed radiation (including the soliton gas) and the soliton,
or else which originate from the sole effect of the radiation, can be con-
sidered as negligible terms for the soliton evolution.

3.3.1. Prove the Stability of the Zero of the Jost Coefficient a

The zero corresponds to the soliton. This part strongly relies on the
analytical properties of a in the upper complex half-plane. For |k|± 1
and for k=iKe2+kŒ, kŒ ¥ R, K± 1. we can derive estimates of a(k) by
Eqs. (35)–(36). We then apply Rouché’s theorem so as to prove that the
number of zeros is constant inside a half disk whose basis is parallel to the
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real axis, but at distance Ke2 from the real axis. This method is efficient to
prove that the main zero (corresponding to the input soliton) is preserved,
but it does not bring control on its precise location in the upper complex
half-plane. This step is not sufficient to compute the variations of the
soliton parameter. Furthermore it is also possible (and it actually holds
true) that new solitons with parameters of order e2 are generated. Note
however that the number J e(t/e2) of such new solitons can be bounded
above by e−2. Indeed we shall see in the next paragraph that the amount Nr

of radiated mass is of order 1 for propagation time of order e−2. The con-
servation of the total mass then implies that the mass Ng=−4 ;Je

j=1 o
e
j of

the soliton gas is bounded above by 0 and below by −Nr −4o0.

3.3.2. Compute the Amount of Radiation and then the Variations
of the Soliton Parameters

Under the adiabatic approximation, we solve the evolution equations
(35)–(36) which then read as:

“a
“t
=

ie
2ko(k+io)2 F R(us)(k2+o2 tanh2(z)) dz, (45)

“b
“t
=8ik3b−

ie exp(−2ikx(t))
2ko(k2+o2)

F R(us)(k−io tanh(z))2 exp 1 −2i
kz
o
2 dz.
(46)

The perturbation is of the form Rj(u)(t, x)=mj(t) rj(u), where rj is a
polynomial of u and its partial derivatives with respect to x. Up to a phase
term, the increment of b̄(k, t) :=b(k, t)/a(k, t) exp(−8ik3t) is:

Db̄ 1DT
e2

, k2=−iGj(o, k)
1
e
F

(T+DT)/e2

T/e2
mj(s) exp(− i8k(k2+o2) s) ds,

where (z=o(x−x(t))):

Gj(o, k)=F rj(us)(z)
(k−io tanh(z))2

2ok(k−io)2 e−2ikz/o dz.

In the case of a perturbation of the velocity, r1(us)(z)=4o3 sinh(z)/cosh(z)3.
Computations based on tabulated formulas [ref. 29, Eq. (3.985)] show that
G1(o, k)=0 for any o and k, while:

G2
3(o, k)=G2

2(o, k)=C(o, k).
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The density of radiation in terms of mass, energy, and Hamiltonian are
n(k, (T+DT)/e2)=n(k, T/e2)+p−1 > dk |Db̄|2 (k, DT/e2) times 1, (2k)2,
and (2k)4, respectively. The time perturbations preserve the total energy, so
that we can deduce from the radiated energy the decay of the energy due to
the soliton part:

E0=
16
3
o3 1 t
e2
2+16

3
C
Je

j=1
o ej

3+F (2k)2 n(k) dk
z
e
−2× e6 ’ e4

Since the new generation of solitons consists of about e−2 solitons whose
energies are of order e6, only the discrete energy of the main soliton and the
continuous energy of the radiation are of order 1 in the balance of the total
energy. This establishes the formula (38).

3.3.3. Compute the Form of the Scattered Wave and Check the
Adiabatic Hypothesis

Given the scattering data, we can reconstruct the wave by Inverse
Scattering Transform. The procedure is given for instance in ref. 19 for a
general type of perturbed KdV equation. We get the first two terms of the
expansion of the kernel K=Ks+Kr, where Ks corresponds to the soliton
and Kr corresponds to the radiation:

Kr(x, y, t)=−
1
2p

F
b
a
(k, t) e ik(x+y) k+io tanh(z)

k+io

×
k−io+io(1+tanh(z) e−(o+ik)(y−x))

k+io
dk

where z=o(x−xs(t)) and xs(t) is the position of the center of the soliton.
By solving the Gel’fand–Levitan–Marchenko equation we can deduce the
form of the radiation in the vicinity of the soliton:

ur(t, x)=
2i
p
F
b
a
(k, t) e2ikx o

2(1− tanh2(z))+k2+iko tanh(z)
k+io

×
k+io tanh(z)

k+io
dk

as well as the corresponding Jost functions fs and fr. Substituting f=fs+fr

and u=us+ur into Eqs. (35)–(36) allows us to derive the second-order
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correction to the Jost coefficient a (of order e2/k). This step puts into evi-
dence that new solitons with parameters of order e2 are generated.

The final part of the proof consists in checking a posteriori the adia-
batic hypothesis, that is to say proving that the radiated wavepacket which
has been determined here above has actually no noticeable influence on the
evolutions (35)–(36) of the Jost coefficients a and b. We must estimate the
components of the functions a and b which have been neglected until now
and which are related to the interplay of the main soliton, the soliton gas,
and the radiation. These are technical calculations which are based upon
the mixing properties of the process V. Some of the estimates are qualita-
tively similar to the ones that are presented in ref. 10 for the randomly
perturbed nonlinear Schrödinger equation. However there are noticeable
differences. The most important difference concerns the existence of a
soliton gas. A qualitative study shows that the gas has low amplitude of
order e3. It does not have an influence onto the main soliton for propaga-
tion times of order e−2. The second difference is concerned with the asym-
metric dispersion relation of the linear KdV equation (with a third-order
dispersion). The dispersion relation is such that the radiation has very small
amplitude in the right-half line of the point where it has been emitted
(If radiation is emitted at point x=0 at time t=0, then it will decay as
(xt)−1/4 exp(−2x3/2/(3t1/2)) for x± t1/3 ± 1). As a consequence, after a
time of order |ln e| after the emission of some radiation, the main soliton
and the generated radiation have no noticeable interaction so that the
interaction process has actually a very short memory. This allows us to
derive sufficient estimates for the components of the coupling coefficients a
and b that originate from the interplay of the main soliton, the soliton gas,
and the radiation. We shall not give the detailed derivations of these esti-
mates because they consist of lengthy calculations that are specific to the
perturbation that is under consideration. This means that the rigorous way
requires to deal with the three types of perturbations of the model (30)–(32)
separately. Furthermore, the first steps of the proof of Proposition 3.1 are
common with the proofs of the forthcoming propositions that are devoted
to various sorts of perturbations, but we should also check the adiabatic
hypothesis for each new type of perturbations. Since this work was per-
formed in ref. 10 for a randomly perturbed NLS equation, and the techni-
cal estimates are essentially similar although the details are different, we
thought it better to refer the interested reader to this paper for an example
of the technical estimates that are necessary for the check of the adiabatic
hypothesis, while we provide here the reader with the main steps of the
proof of Proposition 3.1 as well as we point out the main differences with
the detailed proof of the analogous results for the random NLS equation
studied in ref. 10.
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3.4. Effective Dynamics of the Soliton Parameter

We shall now study the evolution of the parameter of the transmitted
soliton. By Proposition 3.1 this evolution is given by (37). We aim at exhi-
biting the relevant characteristics of this deterministic ordinary differential
equation.

Short-Range Correlation. Let us first assume that the perturbation
has short range correlation in the sense that frequencies of order 8o3 are
smaller than the bandwidth of the perturbation. Accordingly we can sub-
stitute s2

j tc :=ĉj(0) for ĉj(w) in the expressions of the Cj’s:

dol
dt

=−
512
315

(s2
2+s

2
3) tco

7
l , (47)

with the initial condition imposed by the incoming soliton: ol(0)=o0. It
thus appears that the decay of the parameter o is algebraic:

ol(t)=o0 11+
t
T1

2−1/6

, T1=
105

1024(s2
2+s

2
3) tco

6
0

. (48)

We can be more precise about the other components of the scattered wave.
The spectrum of the radiation is centered around 0. By the conservation of
the total mass and energy of the wave we can establish the three following
identities. The mass (resp. energy) of the main soliton is:

Ns(t)=−4o0 11+
t
T1

2−1/6

, Es(t)=
16o3

0

3
11+ t

T1

2−1/2

.

The mass (resp. energy) of the radiation is:

Nr(t)=
9o0
2
11−11+ t

T1

2−1/62 , Er(t)=
16o3

0

3
11−11+ t

T1

2−1/22 .

The mass (resp. energy) of the soliton gas is:

Ng(t)=−
17o0
2
11−11+ t

T1

2−1/62 , Eg(t)=0.

For t± T1, we get that Ng tends to the limit value Ng, lim=−17o0/2. For
t± T1, the incoming soliton has almost vanished. Radiation has been
emitted with mass Nr, lim=9o0/2. A soliton gas with mass Ng, lim has been
created. Note that the mass of the soliton gas is larger (in absolute value)
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than the mass of the incoming soliton, and that the balance −4o0=
Nr, lim+Ng, lim holds true.

Long-Range Correlation. Let us now assume that the perturbation
has long-range correlation in the sense that frequencies of order 8o3 lie in
the tail of the power spectral density of the perturbation. The decay of the
parameter then depends on the decay of the tail of the power spectrum of
the perturbation. Let us assume for instance that the spectrum decays as:

ĉ(w) 4 cpt
1−p
c |w|−p, for |w| tc ± 1.

Note that p > 1 since E[V2(0)] <.. Then ol obeys the equation:

dol
dt

=−c̄pt
1−p
c o

7−3p
l , c̄p=

26−3pp

9
cp F

s4−p(1+s2)2−p

sinh2(ps)
ds.

If p ¥ (1, 2), then the soliton parameter ol decays as t−1/(6−3p):

ol(t)=o0(1+c̄po
6−3p
0 (6−3p) t1−p

c t)−1/(6−3p).

If p=2, the decay is exponential:

ol(t)=o0 exp 1 −c̄2
t
tc
2 , (49)

where c̄2=c2/54. This case is especially relevant, since a w−2 decay for the
power spectral density is very common. For instance the two following
classical models belong to this class. Both of them are step-wise constant
processes that are constant over elementary time intervals [tj, tj+1) and
take values vj over the jth interval. The vj’s are assumed to be independent
random variables with zero-means and variances s2. First assume that the
tj are deterministic and that all intervals have the same duration tc: tj=jtc.
Then the autocorrelation function is:

c(t)=s2 11− |t|
tc
2 1|t| [ tc , (50)

so that the power spectral density is:

ĉ(w)=s2tc sinc 1
wtc
2
22,
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where sinc(s)=sin(s)/s. Second assume that the tj are random and have
independent increments yj :=tj −tj−1 that obey exponential distribution
with mean tc. Then the autocorrelation function is:

c(t)=s2 exp 1 −|t|
tc
2 ,

so that the power spectral density is:

ĉ(w)=s2 2tc
1+w2t2c

.

If p > 2, then the decay of ol is so dramatic that it apparently leads to the
disintegration of the soliton at finite time Tp:

ol(t)=o0 11−
t
Tp

21/(3p−6)

, Tp=
o3p−6

0 tp−1
c

(3p−6) c̄p
.

However, as o decreases, the typical frequency 8o3 also decays and finally
enters into the bandwidth of the power spectrum of the perturbation. We
then get back the regime in t−1/6, whatever p.

Integration of the Effective Ordinary Differential Equation. In
the above paragraphs we have reported two remarkable domains when the
typical frequency 8o3 of the incoming soliton lie either in the tail or at the
top of the power spectral density of the perturbation. The intermediate case
(when the product of the typical frequency 8o3 times the coherence time tc
of the perturbation is of order 1) is also worth studying. In order to study
this configuration we are going to solve numerically the ordinary differen-
tial equation (37) for different incoming solitons. Any software like Maple
or Matlab can do the job accurately.

Let us first consider the step-wise constant process described here
above whose autocorrelation function is given by Eq. (50). Figure 2 plots
the evolutions of the energy of the soliton, defined as 16o3

l (t)/3. The initial
parameter o0 is chosen to be equal to 0.5, while the correlation time tc
varies from 0.2 to 250. These figures put into evidence the following fea-
tures. If tc is small (i.e., 8o

3
0tc is smaller than 1), then the energy decays

as t−1/2 as described by formula (48). If tc is large, then we first observe an
exponential decay as proposed by Eq. (49), which is only transitory and
is replaced by the t−1/2 decay when the product 8ol(t)3tc becomes smaller
than 1.
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Fig. 2. Energy of the soliton during the propagation. The lines correspond to the theoretical
values computed from the system (37). We assume that s2=10−2. We take different values for
the correlation time tc. (a) (in lin-log scale) the energy is shown to decay exponentially if
8o3

0tc \ 1. (b) (in log-log scale), it is shown on the one hand that, if 8o3
0tc \ 1, then the behav-

ior of the energy for long times switch from the exponential decay to the algebraic decay t−1/2.
On the other hand, if 8o3

0tc [ 1, then no exponential decay of the energy can be observed, but
the algebraic decay t−1/2 is noticeable.
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We consider the case of a perturbation of the nonlinear coefficient and
take a autocorrelation function with Gaussian shape:

c2(t)=s2 exp 1 − t2

2t2c
2

with correlation time tc. The power spectral density is then:

ĉ2(w)=s2
`2p tc exp 1 −

w2t2c
2
2 .

Figure 3 plots the evolutions of the energy of the soliton as a function of t.
The parameter o0 is chosen at some fixed value for all lines, equal to 0.5,
but the correlation time tc varies from 0.05 to 50.

The fastest initial decay is obtained for 1/tc of the same order of the
typical frequency 8o3 (see Fig. 3a). If 8o3tc ° 1, then the decay is algebraic
(48), and it is all the slower as tc is smaller. If 8o3tc ± 1, then the decay
is initially all the slower as tc is larger, since F(o) 4 −p2/(3×26t4co

8).
However, as o decreases, the typical frequency 8o3 also decays, and exits
the tail of the power spectral density. Then the function F(o) 4
−(219/2p1/2o7tc)/(9×35) which is all the larger as tc is larger. Thus the
energy decay is finally all the faster as tc is larger (see Fig. 3b).

3.5. Numerical Simulations

The results in the previous sections are theoretically valid in the limit
case eQ 0, where the amplitudes of the perturbations go to zero and the
size of the random system goes to infinity. In this section we aim at showing
that the asymptotic behaviors of the soliton can be observed in numerical
simulations in the case where e is small, more precisely smaller than any
other characteristic scale of the problem. We use a Fourier or pseudo-
spectral method to simulate the perturbed KdV equation. (30) This numerical
algorithm provides accurate and stable solutions to a large class of systems
of ordinary and partial differential equations. (31) The physical interval
[0, L] is discretized by M equidistant points, with spacing h=L/M. The
function u is numerically defined only on these points. With this scheme the
space derivatives are determined by using Fast Fourier TransformsF. ux is
evaluated as F−1(inFu), uxxx as −F−1(in3Fu), and so on. Combined with
a leap frog time step, the KdV equation is approximated by:

u(x, t+Dt)−u(x, t−Dt)+2i(V1(t)+6(V2(t)+1) u(t, x))) DtF−1(nFu)

−2iDt(1−V3(t))F−1(n3Fu)=0.
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Fig. 3. Energy of the soliton during the propagation. The lines correspond to the theoretical
values computed from the system (37). We assume that s2=10−2. We take different values for
the correlation time tc. (a) (in lin-lin scale) the energy is shown to decay fast when 8o3tc is of
order 1. (b) (in log-log scale), it is shown that the behavior of the energy for longer times
obeys the algebraic decay t−1/2 and is all the faster as tc is larger.

Long-Time Dynamics of Korteweg–de Vries Solitons 811



Following ref. 32 we make a modification in the last term and take
F−1(sin(n3Dt) Fu) instead of DtF−1(n3Fu), which gives more stability for
the high wavenumbers n.

Since the time domain is planned to be very long, of order e−2, the
solution will propagate over distances of order e−2, so that we would have
to take a computational domain of size L ’ e−2. In order to deal with a
tractable problem, we use a shifting computational domain which is always
centered at the center of the energy of the solution. Moreover we impose
boundaries of this domain which absorb outgoing waves. This can be
readily achieved by adding a negative potential which is smooth so as to
reduce reflections:

Vabs(x)=˛Vmax tanh2 1L0 −x
L0

2 , if 0 [ x < L0,

0, if L0 [ x [ L1 −L0,

Vmax tanh2 1L1 −L0 −x
L0

2 , if L1 −L0 < x [ L1,

(51)

where L1 (resp. 0) is the left (resp. right) end of the computational domain,
and [0, L0] (resp. [L1 −L0, L1]) is the left (resp. right) absorbing slab.

We first assume in this section that the random perturbation V2 is a
random step-wise constant process, which takes values vj over the elemen-
tary intervals [ntc, (n+1) tc). Here (vj)j=0,..., J−1 is a sequence of indepen-
dent and identically distributed variables, which obey uniform distributions
over the interval [−1, 1], so that ĉ2(w)=(tc/3) sinc2(wtc/2) where
sinc(s)=sin(s)/s. We take e=0.1. The time T=Jtc will be chosen so large
(of order e−2) that we can observe the effect of the small perturbation
eR2(u). We measure the energy of the solution during the propagation, as
well as the envelope of the transmitted solution, that we can compare with
the envelope of the incident soliton.

We perform different simulations where the initial wave at time t=0 is
a pure soliton with parameter o0 centered at xs=L/2. In the first one we
simulate the homogeneous KdV equation (1), which admits as an exact
solution (23). We can therefore check the accuracy of the numerical
method, since we can see that the computed solution maintains a very close
resemblance to the initial soliton (data not shown), while the mass, energy
and Hamiltonian are almost constant (up to 10−3 after a propagation time
of 105). The other simulations are carried out with various values of the
coherence time tc and different realizations of the random perturbation
with e=0.1 or e=0.2. The simulated evolutions of the soliton parameters
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are presented in Fig. 4 and compared with the theoretical evolutions given
by (37) in the scale t/e2. We can observe in particular in Fig. 4b the alge-
braic decay of the energy of the soliton.

We now assume that the random perturbation V2 is a stationary random
process with Gaussian statistics andGaussian autocorrelation function:

c2(t)=exp 1 − t2

2t2c
2 ,

so that the power spectral density ĉ2 has also Gaussian shape. We take also
e=0.1. Figure 5 plots the energy of the output soliton versus time.

It thus appears that the numerical simulations are in very good
agreement with the theoretical results. The simulated plots follow very
closely the theoretical ones. This is partly due to the fact that the perturbed
equation preserves the total energy:

Etot=
16
3

C
j
o3

j+F
.

−.
(2k)2 n(k) dk, (52)

where n(.) is the density of scattered mass. This implies stability for the
parameter of the main soliton. All these results confirm that the effective
ordinary differential equation (37) describes with accuracy the transmission
of a soliton in a KdV system with small random time perturbations.

4. POSITION-DEPENDENT PERTURBATIONS OF THE KDV

EQUATION THAT PRESERVE THE HAMILTONIAN

4.1. The Perturbed Model

We consider a perturbed Korteweg–de Vries equation with a non-zero
right-hand side:

ut+uxxx −6uux=eR(u)(t, x). (53)

The small parameter e ¥ (0, 1) characterizes the amplitude of the perturbation.
Here we assume that

R(u)=(V1(x) u)x+(V2(x) u2)x+(V3(x) ux)xx, (54)

Long-Time Dynamics of Korteweg–de Vries Solitons 813



Fig. 4. Energy of the soliton whose initial parameter is o0=0.5 (energy E0=2/3), driven
by a random perturbation 6eV2uux where V2 is a random step-wise constant process with
coherence time tc and amplitude e=0.1. The scales are linear in (a) and logarithmic in (b).
The thick dotted lines represent the theoretical coefficients of the transmitted soliton. In thin
dashed and dotted lines are plotted the simulated energies of the solitons for different realiza-
tions of the random perturbation.
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Fig. 5. Energy of the soliton whose initial parameter is o0=0.5 (energy E0=2/3), driven by
a random perturbation 6eV2uux where V2 is a random process with Gaussian statistics, ampli-
tude e=0.1, and coherence time tc. The thick dotted lines represent the theoretical coefficients
of the transmitted soliton. In thin dashed and dotted lines are plotted the simulated energies of
the solitons for different realizations of the random perturbation. (a) It can be seen that the
decay is all the faster as tc is larger, since this is the regime 8o3tc [ 1. (b) It can be seen that the
decay is first fast for the smallest tc, since this is the regime 8o3tc \ 1. However, as o decays,
the regime 8o3tc [ 1 is recovered and then the decay is all the faster as tc is larger.
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which means that Eq. (53) can be derived from the perturbed Hamiltonian:

Hper=F eV1(x) u2+(2+2
3 eV2(x)) u3+(1− eV3(x)) u

2
x, (55)

where V1 (resp. V2, V3) stands for position-dependent fluctuations of the
velocity (resp. the nonlinear coefficient, the dispersion). The perturbations
Vj are assumed to be zero-mean, stationary and ergodic processes. For the
sake of simplicity we also assume that they are independent processes. The
autocorrelation function of Vj is denoted by:

cj(x) :=E[Vj(0) V(x)]=E[Vj(xŒ) Vj(xŒ+x)], (56)

where E stands for the statistical average with respect to the stationary dis-
tribution of Vj. We assume the technical f-mixing condition with f ¥ L1/2

(see Section 3.1). We introduce the Fourier transform of the autocorrela-
tion function of the perturbation Vj:

ĉj(k) :=F
.

−.
cj(x) cos(kx) dx, (57)

which is nonnegative real-valued since it is proportional to the power spec-
tral density of Vj. Here we have to discuss the continuity properties that are
required for the processes Vj. In case of time-dependent perturbations no
smoothness is required, but due to the particular form (54) derivatives of
the processes Vj should exist. The processes V1 and V2 are required to
possess continuous and differentiable realizations. For instance stationary
processes with Gaussian statistics that satisfy > ĉj(k) k2+d dk <., d > 0,
j=1, 2, are suitable. The process V3 is required to possess continuous and
twice differentiable realizations. For instance stationary processes with
Gaussian statistics that satisfy > ĉ3(k) k4+d dk <., d > 0, are suitable.

In such conditions Proposition 3.1 holds true. The only difference is
that the function F is here equal to:

F(o)=
1

64o4 C
3

j=1
F
R
(2k)4 Cj(o, k) dk, (58)

where the function Cj is the spectral mass density scattered by the soliton
with parameter o per unit time due to the perturbation Rj. The exact
expressions of the Cj’s are the following:
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C1(o, k)=
4pk6 11+k2

o2
26

9o6 sinh2 1p k
3

o3
2
ĉ1(K(o, k)), (59)

C2(o, k)=
32pk6 11+k6

o6
22 19+10

k2

o2+5
k4

o4+
k6

o6
22

452o2 sinh2 1p k
3

o3
2

ĉ2(K(o, k)), (60)

C3(o, k)=
64pk6 11+k2

o2
22 16−k2

o2
11+k2

o2
2422

152o2 sinh2 1p k
3

o3
2

ĉ3(K(o, k)), (61)

where K is the function:

K(o, k)=
2k(k2+o2)
o2 . (62)

The function F is positive-real valued, which means that the parameter o
of the output soliton increases with time. This configuration is completely
different from the time perturbations where the parameter of the soliton
decays. Note also that spatial fluctuations of the velocity involve modifi-
cations of the soliton dynamics, unlike the time-dependent case. Further-
more spatial fluctuations of the nonlinear coefficient and dispersion are
not equivalent, although they are both of the same form: Cj(o, k)=
o4Cj(1, k/o) ĉj(oK(1, k/o)), j=2, 3.

4.2. Effective Dynamics of the Soliton Parameter

Long-Range Correlation. We first assume that the typical wave-
number 2o0 of the incoming soliton lies in the tail of the power spectral
density of the perturbation. For the forthcoming analysis, we also assume
that the power spectral density decays as cpl

1−p
c |k|−p , |k| lc ± 1. Note that

p > 3 since we assume that the Vj’s are differentiable.
In the case of a perturbation V1 of the velocity, the parameter o grows

algebraically as t1/p. In terms of the propagation distance L, the decay is
algebraic with power 3/(p+2): E(L) ’ L3/(p+2).
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In the case of a perturbation Vj, j=2, 3 of the nonlinear coefficient or
of the dispersion, the parameter o grows algebraically as t1/(p−4) if p > 4,
and exponentially if p=4. If p < 4, then the soliton will apparently blow
up in finite time, as (1−t/Tp)1/(p−4). The blow-up time Tp is proportional to
lp−1
c o

p−4
0 . However, in terms of the propagation distance L, the growth of

the energy is algebraic with power 3/(p−2): E(L) ’ L3/(p−2).

Short-Range Correlation. We now assume that the typical wave-
number 2o0 of the incoming soliton is smaller than the bandwidth of the
power spectral density of the perturbation. In the case of a perturbation V1

of the velocity, the parameter o first grows exponentially. However, as o
increases, the typical wavenumber 2o also increases, and finally reaches the
tail of the power spectral density of the perturbation. We then enter the
long-range correlation regime.

In the case of a perturbation V2 (resp. V3) of the nonlinear coefficient
(resp. the dispersion), the parameter o first grows algebraically as t1/4. Here
also, as o increases, the typical wavenumber 2o reaches the tail of the
power spectral density of the perturbation. We then enter the long-range
correlation regime.

4.3. Numerical Simulations

The numerical scheme is the same as in Section 3.5. We consider per-
turbations Vj that are random processes with Gaussian statistics, Gaussian
autocorrelation function, and correlation length lc:

cj(x)=exp 1 − x2

2l2c
2

The evolution of the energy of the soliton is plotted in Figs. 6 and 7 for
different correlation lengths and different types of perturbations. The
simulated values are compared with the theoretical predictions, which
shows excellent agreement.

We would like to comment on the oscillations of the energy that can
be observed in Figs. 6 and 7, while such fluctuations were absent in the
time-dependent perturbations. Indeed, in the configuration at hand, the
perturbed HamiltonianHper is preserved, which also reads as:

Hper=F
R
(2k)4 n(k) dk−

2
5

C
J

j=1
(2oj)5+e F V1(x) u2+2

3 V2(x) u3−V3(x) u
2
x.
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Fig. 6. Energy of the soliton whose initial parameter is o0=0.3 (energy E0=0.144), driven
by a random perturbation with Gaussian statistics and correlation length lc=0.2. The thick
dotted lines represent the theoretical predictions. In thin dashed and dotted lines are plotted
the simulated energies of the solitons for different realizations of the random perturbations.
Figure 6(a) presents results corresponding to a perturbation V1 of the velocity (see Eq. (54))
with e=0.025. We can observe the exponential growth of the soliton energy. Figure 6(b) pre-
sents results corresponding to a perturbation V2 of the nonlinear coefficient with e=0.1. We
can observe the blow up of the energy in finite time. The saturation of the energy at the value
80 is a numerical artifact, since the numerical scheme is not designed to deal with such an
intense and narrow wave solution.
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Fig. 7. The same as in Figure 6, but the random perturbation with Gaussian statistics has
correlation length lc=1 or 2, and the incoming soliton has parameter is o0=0.4 (energy
E0=0.341).
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The last term of the right-hand side is negligible in the asymptotic frame-
work eQ 0, but when e > 0 it gives rise to local fluctuations of the unper-
turbed Hamiltonian as defined by (22), hence local fluctuations of the
parameter o and the corresponding energy 16o3/3. The fluctuations are
important when the correlation length of the medium is of the same order
or even larger than the soliton width (see Fig. 7). They are smoothed when
the correlation length is much smaller than the soliton width (see Fig. 6).

5. POSITION-DEPENDENT PERTURBATIONS OF THE KDV

EQUATION THAT PRESERVE THE ENERGY

We consider a perturbed Korteweg–de Vries equation with a non-zero
right-hand side:

ut+uxxx −6uux=eR(u)(t, x). (63)

The small parameter e ¥ (0, 1) characterizes the amplitude of the perturba-
tion. Here we assume that

R(u)=(V1(x) u)x+V1(x) ux+(V2(x) u2)x+V2(x)(u2)x

+(V3(x) ux)xx+(V3(x) uxx)x, (64)

which means that Eq. (63) conserves the energy of the solution:

F uR(u) dx=0

Note here that the total mass is not preserved. Once again V1 (resp. V2, V3)
stands for position-dependent fluctuations of the velocity (resp. the non-
linear coefficient, the dispersion).

Proposition 3.1 holds true in such conditions, at the expense to take
the following definition for the function F:

F(o)=−
1

16o2 C
3

j=1
F
R
(2k)2 Cj(o, k) dk, (65)

where the functions Cj are the mass density scattered by the soliton with
parameter o per unit time due to the perturbation Rj. The exact expressions
of the Cj’s are the following:
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C1(o, k)=
4pk6 11+k2

o2
22

o6 sinh2 1p k
3

o3
2
ĉ1(K(o, k)), (66)

C2(o, k)=
64pk6 12+k2

o2
22 11+k6

o6
22

9o2 sinh2 1p k
3

o3
2

ĉ2(K(o, k)), (67)

C3(o, k)=
64pk6 11+k2

o2
22 13−11+k2

o2
2222

9o2 sinh2 1p k
3

o3
2

ĉ3(K(o, k)), (68)

where the function K is defined by Eq. (62).

Short-Range Correlation. In the case of a perturbation V1 of the
velocity, we get an exponential decay of the parameter o. Note that, in
terms of propagation distance, this means that the soliton will disintegrate
in finite distance Ld,

Ld=
2o2

0

s2
1lccd

, cd=p F
.

−.

s8(1+s2)2

sinh2(ps3)
ds 4 0.24

or else that it cannot be transmitted through a slab whose length exceeds
the critical value Ld. In the case of a perturbation V2 (resp. V3) of the non-
linear coefficient (resp. the dispersion), we get an algebraic decay of the
parameter o as t−1/4. In terms of the propagation distance L, the decay is
algebraic with power 1/2: E(L) ’ L−1/2.

Long-Range Correlation. In the case of a perturbation V1 of the
velocity, we get an apparent disintegration of the soliton in finite time sin-
ce the parameter o behaves like (1−t/Tp)1/p. However, as o decays, the
typical wavenumber 2o becomes smaller than the bandwidth of the per-
turbation and leaves the tail of the power spectral density. Thus we get
back the regime described in the previous section.

In the case of a perturbation V2 (resp. V3) of the nonlinear coefficient
(resp. the dispersion), we can observe a slow decay of the soliton parameter
as t1/(p−4) if p < 4, and an exponential decay if p=4. If p > 4, we put into
evidence an apparent disintegration of the soliton if since the soliton
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parameter behaves like as (1−t/Tp)1/(p−4). However, by the same argu-
ments as in the case of the perturbation V1, we get back the short-range
correlation regime when o becomes small enough so that 2olc < 1.

Numerical Simulations. The numerical scheme is the same as in
Section 3.5. We consider perturbations Vj that are random processes with
Gaussian statistics, Gaussian autocorrelation function, and correlation
length lc. The evolution of the energy of the soliton is plotted in Figs. 8 and
9 for different correlation length and different types of perturbations. The
simulated values are compared with the theoretical predictions, which
shows excellent agreement.

Note that the total energy is preserved, so that the parameter o can
only decay and no local fluctuation can be observed in Figs. 8 and 9, unlike
the configuration described in Section 4.3.

6. RANDOM PERTURBATIONS AND DAMPING

In this section we would like to show that the theoretical approach
developed in the previous sections can still be applied in presence of
damping, that is to say when there is no known integral of motion. Indeed
a precise estimate of one quantity is actually sufficient to derive analogous
results as those of Proposition 3.1. To illustrate this assertion we shall con-
sider the case of a random potential:

ut+uxxx −6uux=eV(t) u, (69)

where e ¥ (0, 1) characterizes the amplitude of the perturbation, and V is a
time-dependent random potential. We shall denote by cV the autocorrela-
tion function of V and by ĉV its power spectral density defined as the
Fourier transform of cV. It is straightforward to establish that the energy of
the wave is not preserved but varies randomly:

Etot(t)=E0 exp 12e F
t

0
V(s) ds2 , (70)

where E0=
16
3 o

3
0 is the energy of the incoming soliton. Once this identity

is known, we can apply the very same approach as in Section 3. There
then appears a dichotomy. Indeed the application of a standard diffusion
approximation theorem shows that in the asymptotic eQ 0, the total
energy in the scale t/e2 evolves as Ē(t):

Etot(t/e2)|Ł
eQ 0 Ē(t) :=E0 exp(2sWt),
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Fig. 8. Energy of the soliton whose initial parameter is o0=0.5 (energy E0=2/3), driven by
a random perturbation with Gaussian statistics and correlation length lc=0.2. The thick
dotted lines represent the theoretical predictions. In thin dashed and dotted lines are plotted
the simulated energies of the solitons for different realizations of the random perturbations.
Figure 8(a) presents results corresponding to a perturbation V1 of the velocity with e=0.015
(see Eq. (64)). We can observe the exponential decay of the energy. Figure 8(b) presents results
corresponding to a perturbation V2 of the nonlinear coefficient with e=0.1. We can observe
the decay of the energy as t−3/4.
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Fig. 9. The same as in Fig. 8, but the random perturbation has correlation length lc=1
or 2.
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where Wt is a standard one-dimensional Brownian motion and s :=
`ĉV(0). By the Wiener–Khintchine theorem it is known that ĉV(0) is non-
negative. We should then distinguish between the case ĉV(0)=0 (no
damping) and ĉV(0) > 0 (presence of an effective damping).

6.1. Perturbation Without Damping

We assume in this section that ĉV(0)=0. We may think at the case
where V is the time-derivative UŒ of some stationary process U with con-
tinuously differentiable realizations, autocorrelation function cU, and
power spectral density ĉU. Note that the autocorrelation functions of U and
V are related through the identity:

cV(t)=E[UŒ(tŒ) UŒ(tŒ+t)]=−E[U(tŒ) Uœ(tŒ+t)]=−c'U(t)

so that their respective power spectral densities satisfy:

ĉV(w)=w2ĉU(w).

We then get that, with probability that goes to 1 as eQ 0, the scattered
wave at time t/e2 consists of one main soliton with parameter o e(t), a soli-
ton gas, and radiation. The process (o e(t))t ¥ [0, T] converges in probability
to the deterministic function (ol(t))t ¥ [0, T] which satisfies the ordinary dif-
ferential equation:

dol
dt

=F(ol), ol(0)=o0, (71)

where

F(o)=−
1

16o2 F
R
(2k)2 CV(o, k) dk,

CV(o, k)=
4p

9 sinh2 1p k
o
2
ĉV(W(k, o)).

(72)

If V=Ut for some stationary process U with power spectral density ĉU,
then
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F(o)=−
1

16o2 F
R
(2k)2 CU(o, k) dk,

CU(o, k)=
256pk2o4 11+k2

o2
22

9 sinh2 1p k
o
2
ĉU(W(k, o)).

(73)

The result in this configuration is not surprising, and can be revisited in
terms of the auxiliary field ũ(t, x) :=u(t, x) exp(− e > t

0 V(s) ds). The field ũ
is solution of:

ũt+ũxxx −6ũũx=6ũũxŨ(t),

where Ũ(t)=exp(e > t
0 V(s) ds)−1. From the identity V=Ut we get that

Ũ(t)=exp e(U(t)−U(0))−1 4 e(U(t)−U(0)). The auxiliary quantity ũ
thus obeys a KdV equation with a random time-dependent nonlinear coef-
ficient. This configuration was studied in Section 3, and the results are
consistent with each other (compare CU and C2 as defined by (40)). In
Fig. 10 we compare numerical simulations with the theoretical predictions
in the case V=UŒ where U is a stationary random process with Gaussian
statistics, Gaussian autocorrelation function cU(t)=exp(−t2/(2t2c)) with
coherence time tc. When we consider the energy of the soliton, we deals
with a curve that is randomly modulated at time scale 1. Indeed the energy
is preserved in the asymptotic framework eQ 0, but for e > 0:

Etot(t)=E0 exp(2e(U(t)−U(0))).

These local fluctuations (of amplitude ’ e) involve the observed local fluc-
tuations of the energy of the soliton (Fig. 10a). However these fluctuations
have no importance when we consider the long-time behavior (at scale e−2)
which is imposed by Eqs. (71) and (73) (Fig. 10b).

6.2. Perturbation with Damping

We assume in this section that ĉV(0) > 0 and set s=`ĉV(0). We then
get that, with probability that goes to 1 as eQ 0, the scattered wave at time
t/e2 consists of one main soliton with parameter o e(t), a soliton gas, and
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Fig. 10. Energy of the soliton whose initial parameter is o0=0.5 (energy E0=2/3), driven
by a random perturbation eV(t) u where V is the time derivative of a random process with
Gaussian statistics, Gaussian autocorrelation function, coherence time tc, and amplitude
e=0.1. Figure 10(a): We can observe on this particular realization (tc=0.2) that the energy is
fluctuating at time scale 1, but there is a noticeable trend at time scale e−2. Figure 10(b): The
numerical results are smoothed by averaging the energies over a time interval of duration 100.
They can then be compared with the theoretical curves.
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radiation. The process (o e(t))t ¥ [0, T] converges in probability to the random
function (ol(t))t ¥ [0, T] which satisfies the stochastic differential equation:

dol=F(ol) dt+
2
3 sol p dWt, ol(0)=o0, (74)

where

F(o)=−
1

16o2 F
R
(2k)2 CV(o, k) dk,

CV(o, k)=
4p

9 sinh2 1p k
o
2
ĉV(W(k, o)),

(75)

and p stands for the Stratonovich integral. In case of a white noise c(t)=
s2d(t), we have F(o)=−s

2

27 o, so that the solution of the stochastic differ-
ential equation has a closed-form expression:

ol(t)=o0 exp 1 −
s2

27
t+

2
3
sWt
2 . (76)

Note that the typical behavior of the parameter o is to decay exponentially
with t, sinceWt ’`t :

1
t
ln ol(t) 4

s
2t ± 1

−
s2

27
.

However the moments of ol grow exponentially:

E[on
l (t)]=o

n
0 exp 11

2n2

9
−

n
27
2 s2t2 .

In particular the mean energy (n=3) growths as exp(17s2t/9), while its
typical value decays as exp(−s2t/9). The mean value is actually imposed
by a very small set of realizations of the random potential V for which the
energy takes exceptional and very large values. Note also that the ratio of
the energy Es of the soliton and of the total energy Etot is non-random:

Es

Etot
=exp 1 −s

2

9
t2 . (77)

In Fig. 11 we assume that V is a step-wise constant potential that takes the
value vn over the interval [ntc, (n+1) tc), n ¥N, where (vn)n ¥N is a sequence
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Fig. 11. Energy of the soliton whose initial parameter is o0=0.5 (energy E0=2/3), driven
by a random perturbation eV(t) u where V is stepwise constant with coherence time tc=0.2,
and amplitude e=0.1. Figure 11(a): The energy of the soliton Es is plotted together with the
total energy Etot as defined by (70). We can observe that these quantities are very close to each
other, although a slight departure can be detected as time increases. Figure 11(b): The ratio
between Es and Etot is plotted for two different realizations and compared to the theoretical
predictions (77).
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of independent and identically distributed random variables with uniform
distributions over [−1, 1]. We consider configurations close to the white
noise case by setting tc=0.2, so that the product of the typical frequency
8o3

0 times tc is smaller than 1. We can see that the energy of the soliton
varies randomly (Fig. 11a), and follows rather closely the total energy.
Actually the part of the total energy (70) that is contained in the soliton is
clearly non-random and follows the theoretical curve (Fig. 11b).

7. CONCLUSIONS

We have applied different types of random perturbations to the inte-
grable Korteweg–de Vries equation. We have studied the propagation of a
soliton in these random systems. Our method can be applied to a large
class of random perturbations that are in some sense stationary and
ergodic. The only but important condition is that some integral of motion
should be preserved by the perturbation, or else that it could be a priori
computed. Indeed, if the amount of radiation can be estimated in very
great generality, the feedback of this generation onto the evolution of the
soliton parameter will be imposed by the underlying conservation relation
and it will strongly depends on the nature of the conserved quantity. If the
energy is preserved, then the soliton parameter will decay. This is the case
for many realistic perturbation models with time-dependent or position-
dependent coefficients. However we have also exhibited some models where
our analysis shows that the soliton is speeded-up.

As a result our approach could be applied to any perturbation which
produces a computable change in some integral of motion. However, as
pointed out in Section 3.3, the final step of the derivation of the result
consists in an a posteriori check of the so-called adiabatic hypothesis. So
we could state a very general result only in a formal way, that is to say
provided that an implicit condition is fulfilled. Our approach can thus be
generalized, but a specific study will still be necessary for any new type of
perturbations.

We have put into evidence that the scattering of the soliton generates
not only radiation during its motion, but also a soliton gas, that is to say
a collection of J e, of order e−2, solitons with small masses of order e2

(remember e is the dimensionless parameter that governs the amplitude of
the perturbation eR(u) and the duration of the propagation T/e2). In the
asymptotic framework where e goes to zero, the soliton gas has non-zero
mass, but zero energy. The production of the soliton gas is interesting by
itself as a new phenomenon that is not encountered when a random NLS
equation is considered, but it should also be pointed out that this produc-
tion is very important in that one cannot understand correctly the changes
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in the conservation equations without accounting for soliton production.
Finally note that, in the framework of the inverse scattering transform,
radiation corresponds to the absolutely continuous spectrum, the main
soliton corresponds to the discrete pure point spectrum, and the soliton gas
would correspond to the singular continuous spectrum. It should be
interesting to study in more detail the structure of the soliton gas.
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